Dit is een site voor studenten van de Open Universiteit. Voordat je een vraag kunt stellen moet je even een account aanmaken (dit systeem is niet gekoppeld aan je OU studentnummer en wachtwoord).

Welkom bij het vraag- en antwoord systeem van de onderzoeks-practica van de studie psychologie bij de Open Universiteit.

Houd er, als je een vraag stelt, rekening mee dat je de richtlijnen volgt!

Is er een overzicht van de tentatieve grenswaarden van effect sizes?

0 leuk 0 niet-leuks
Om te bepalen hoe sterk een effect of verband is, moet je naar effect sizes kijken, zoals Cohen's d, Pearson's r, $\eta^2$, of Cramèr's V. Is er ook ergens een overzicht van de grenswaarden voor deze effect sizes?
gevraagd 12 december 2014 in Bivariate statistiek door gjp (63,300 punten)

1 Antwoord

0 leuk 0 niet-leuks

Er zijn verschillende overzichten te vinden, maar een handige tabel staat op http://imaging.mrc-cbu.***.ac.uk/statswiki/FAQ/effectSize. Gemakshalve heb ik die hier even gepaste:


The scales of magnitude are taken from Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates. The scales of magnitude for partial $\omega^\text{2}$ are taken from Table 2.2 of Murphy and Myors (2004).

There is also a table of effect size magnitudes at the back of Kotrlik JW and Williams HA (2003). An overview of commonly used effect sizes in psychology is given by Vacha-Haase and Thompson (2004).

Kraemer and Thiemann (1987, p.54 and 55) use the same effect size values (which they call delta) for both intra-class correlations and Pearson correlations. This implies the below rules of thumb from Cohen (1988) for magnitudes of effect sizes for Pearson correlations could also be used for intra-class correlations. It should be noted, however, that the intra-class correlation is computed from a repeated measures ANOVA whose usual effect size (given below) is partial eta-squared. In addition, Shrout and Fleiss (1979) discuss different types of intra-class correlation coefficient and how their magnitudes can differ.

The general rules of thumb given by Cohen and Miles & Shevlin (2001) are for eta-squared, which uses the total sum of squares in the denominator, but these would arguably apply more to partial eta-squared than to eta-squared. This is because partial eta-squared in factorial ANOVA arguably more closely approximates what eta-squared would have been for the factor had it been a one-way ANOVA and it is presumably a one-way ANOVA which gave rise to Cohen's rules of thumb.

Effect Size

Use

Small

Medium

Large

Correlation

 

0.1

0.3

0.5

$\eta^2$

one-way anova (regression)

0.01

0.06

0.14

$\eta^2$

Anova

0.02

0.13

0.26

omega-squared

Anova; See Field (2013)

0.01

0.06

0.14

Multivariate eta-squared

one-way MANOVA

0.01

0.06

0.14

Cohen's f

one-way an(c)ova (regression)

0.10

0.25

0.40

$\eta^2$

Multiple regression

0.02

0.13

0.26

$\kappa^2$

Mediation analysis

0.01

0.09

0.25

Cohen's f

Multiple Regression

0.14

0.39

0.59

Cohen's d

t-tests

0.2

0.5

0.8

Cohen's $\omega$

chi-square

0.1

0.3

0.5

Odds Ratios

2 by 2 tables

1.5

3.5

9.0

Average Spearman rho

Friedman test

0.1

0.3

0.5

Also:Haddock et al (1998) state that $\sqrt{3/\pi}$ multiplied by the log of the odds ratio is a standardised difference equivalent to Cohen's d.

beantwoord 12 december 2014 door gjp (63,300 punten)
bewerkt 12 december 2014 door gjp
Is iemand hier ook iets bekend over de waarde van van de partial eta square? Kwam wel ergens iets tegen over dat deze gelijk zijn aan eta square als er slechts één onafhankelijke variabele is, maar uiteraard kan ik dit nergens meer terugvinden/nazoeken...
...