Dit is een site voor studenten van de Open Universiteit. Voordat je een vraag kunt stellen moet je even een account aanmaken (dit systeem is niet gekoppeld aan je OU studentnummer en wachtwoord).

Welkom bij het vraag- en antwoord systeem van de onderzoeks-practica van de studie psychologie bij de Open Universiteit.

Houd er, als je een vraag stelt, rekening mee dat je de richtlijnen volgt!

Het formuleren van een hypothese mbt tot een verschil

0 leuk 0 niet-leuks
Ik refereer naar opdracht 4.1.1 . Studenten die de toegepaste cursus volgen hebben een hogere statistiekkennis en een lagere statistiek angst dan zij die de klassieke abstracte cursus volgen. Voor de eerste bewering mag de hypothese uitgedrukt worden in termen van een verschil. Bij de tweede bewering moet de hypothese geformuleerd worden in termen van een afname. Ik snap dit niet. Ik zou dit kunnen begrijpen als SPSS werkt met de absolute waarde van het verschil bevoorbeeld in een t toets. Maar mij lijkt dat SPSS werkt met een algebraisch verschil. Ik zou het ook kunnen begrijpen als de verschillen gekwadrateerd worden (Anova) maar dan is de test Tukey en soorgenoten daar om uit te maken waar de verschillen significant zijn. Dit onderdeel ontgaat me en een bijkomende verklaring wordt in dank aanvaard.

mvg

Jan De Smet
gevraagd 11 oktober 2013 in Kwantitatieve Data Analyse (KDA) door Jan DS (330 punten)
bewerkt 11 oktober 2013 door Jan DS
Er is hier iets fout gegaan; de vraag is niet geformuleerd als vraag, noch is er een toelichting waaruit duidelijk wordt wat je wil weten. Zou je deze vraag kunnen aanpassen?

1 Antwoord

0 leuk 0 niet-leuks

De betreffende tekst is:

Hypothese 1
Het tentamencijfer van studenten die de toegepaste cursus gevolgd
hebben, is hoger dan het tentamencijfer van studenten die de traditionele
cursus gevolgd hebben.
(bron ‘Vergelijken van twee gemiddelden: de t‐toets’)

Hypothese 2
De statistiekkennis is toegenomen na het volgen van een statistiekcursus.
(bron ‘Vergelijken van twee gemiddelden: de t‐toets’)

Hypothese 3
De statistiekkennis voorafgaande aan de statistiekcursus is hoger bij
studenten die een hogere vooropleiding hebben.
(bron ‘Vergelijken van meer dan twee gemiddelden: ANOVA’)

De eerste hypothese betreft een vergelijking tussen de gemiddelden die op hetzelfde moment zijn gemeten in twee verschillende groepen (toegepaste vs traditionele cursus). Daarom wordt hier niet gesproken van een toename of afname, maar over verschillen in hoogte. De tweede hypothese betreft wel een toe- of afname over tijd; dit betreft een vergelijking tussen gemiddelden die op twee verschillende momenten zijn gemeten binnen dezelfde groep. De derde hypothese betreft weer een vergelijking tussen twee gemiddelden die op hetzelfde moment zijn gemeten in twee groepen.

Maar, eigenlijk zijn deze precieze formuleringen en de onderliggende redeneringen niet erg belangrijk. Alle onderzoeksvragen en hypothesen in kwantitatief onderzoek hebben betrekking op een verband, relatie, afhankelijkheid. Als je een t-toets doet, betreft dit het verband tussen een dichotome variabele (waarbij de twee mogelijke meetwaarden zich manifesteren in twee groepen, e.g. toegepast vs traditioneel onderwijs) en een interval-variabele (e.g. statistiek-kennis). Bij een anova is de ene variabele van nominaal of ordinaal niveau met minstens drie meetwaarden (die zich weer manifesteren in groepen; de variabele 'onderwijstype' kan zich bijvoorbeeld manifesteren als de drie groepen traditioneel, toegepast, en futuristisch onderwijs) en de andere variabele weer van interval-niveau (e.g. statistiek-kennis). Bij correlaties zijn beide variabelen van interval-niveau, en hebben ze dus elk heel veel meetwaarden (zoals leeftijd of statistiek-cijfer) waarbij opeenvolgende meetwaarden altijd even ver van elkaar afliggen.

Er zijn dus twee belangrijke dingen waar je op moet letten bij de formulering van een onderzoeksvraag of hypothese.

Het eerste is dat je een verband moet beschrijven; je stelt dat (of vraagt je af of) de meetwaarde die iemand heeft op de ene variabele informatie geeft over de meetwaarde die iemand heeft op de andere variabele. Bijvoorbeeld: als iemand de meetwaarde "traditioneel onderwijs" scoort op de "ondertijstype" variabele, vertelt dat ons iets over de meetwaarde die die persoon zal hebben op de statistiek-toets.

Het tweede is dat je de richting van dat verband aan kunt geven. Je kunt een voorspelling doen over of iemand die traditioneel onderwijs heeft gevolgd, hoger of lager op de statistiek-toets scoort dan iemand die toegepast onderwijs volgde. Dat is een gerichte hypothese of onderzoeksvraag (in de praktijk zijn onderzoeksvragen nooit gericht; als je een idee hebt over een richting, zul je vrijwel altijd hypothesen formuleren).

Of je het hebt over een toename of afname gaat over of tijd een rol speelt in het design van de studie; als je slechts 1 meetmoment hebt, kan er natuurlijk geen sprake zijn van afnamen, dit vereist altijd minimaal 2 meetmomenten. Echter, je kunt prima een onderzoeksvraag of hypothese formuleren als je twee meetmomenten hebt zonder dat je van toename of afnamen spreekt.

Is dit een beetje duidelijk, of nog niet echt?

beantwoord 13 oktober 2013 door gjp (69,380 punten)
...