Dit is een site voor studenten van de Open Universiteit. Voordat je een vraag kunt stellen moet je even een account aanmaken (dit systeem is niet gekoppeld aan je OU studentnummer en wachtwoord).

Welkom bij het vraag- en antwoord systeem van de onderzoeks-practica van de studie psychologie bij de Open Universiteit.

Houd er, als je een vraag stelt, rekening mee dat je de richtlijnen volgt!

Hoe zie ik bij thema 2.3-antwoord vraag 8 dat de 2 afwijkende scores geen outliers zijn?

0 leuk 0 niet-leuks

In de boxplot zie ik 2 afwijkende scores, maar het juiste antwoord  zegt: '' Als boxplots per conditie zijn gedraaid, dan lijken case 36 en 37 uitbijters, maar deze zijn nog binnen de marge.''  Hoe kan ik zien dat die scores ''binnen de marge''  zijn?

gevraagd 2 maart 2018 in Experimenteel Onderzoek (PB0402 en S05281) door Bouwman (180 punten)

1 Antwoord

0 leuk 0 niet-leuks
Een hint hiernaar wordt gegeven in de terugkoppeling (althans, i.i.g. in de kwartiel-3 versie van de yOUlearnomgeving):

"Er valt op dat dit case 36 en case 37 de enige twee cases zijn in de controlegroep die fouten gemaakt hebben (of beter gezegd: een fout gemaakt hebben). De scores van deze twee cases zijn dus niet extreem hoog, maar vallen alleen maar op omdat verder niemand in de controlegroep een fout gemaakt heeft."

Wat hieruit te leren valt is dat er op een statistische manier naar outliers gezocht kan worden, maar dat er altijd gekeken moet worden naar 'hoe komt het dat ze outliers zijn'. Dus dat er ook op een niet-statistische manier gekeken wordt. Data verwijderen is namelijk best extreem ingrijpend, dus dat doen we eigenlijk het liefst alleen wanneer gegeven waarden (en daarmee: proefpersonen/respondenten) niet deel zijn van de doelpopulatie, of wanneer de scores zo extreem zijn dat ze op zichzelf de analyse domineren. In bovenstaand voorbeeld lijkt daarvan geen sprake te zijn. Eventueel zou dat 'getoetst' kunnen worden door de cook's distance voor deze cases te bepalen (zie Field). Dit laatste behoort echter niet tot de tentamenstof
beantwoord 6 maart 2018 door Ron Pat-El (40,860 punten)
...