Dit is een site voor studenten van de Open Universiteit. Voordat je een vraag kunt stellen moet je even een account aanmaken (dit systeem is niet gekoppeld aan je OU studentnummer en wachtwoord).

Welkom bij het vraag- en antwoord systeem van de onderzoeks-practica van de studie psychologie bij de Open Universiteit.

Houd er, als je een vraag stelt, rekening mee dat je de richtlijnen volgt!

Hoe kan je de variantie kleiner maken?

0 leuk 0 niet-leuks
gevraagd 9 januari in Inleiding Data Analyse (IDA) door vraagstellen (180 punten)
Kun je iets meer context aan je vraag geven?
Om de power te versterken kan je drie dingen doen:

- N vergroten (dit begrijp ik)

- Patroon dat je zoekt uitvergroten door bijvoorbeeld extremen in de populatie te zoeken en deze te nemen voor je onderzoek.

- De variantie kleiner maken. Ik heb nog niet helemaal helder hoe ik dit dan moet doen.

1 Antwoord

0 leuk 0 niet-leuks
De meest gebruikelijk manier om de variantie te verkleinen in de context van power is om een homogenere steekproef te trekken. Dat kan door bijvoorbeeld de 'scope' (doelpopulatie) enger te definieren. In plaats van mensen op te roepen om deel te nemen aan depressieonderzoek (waardoor je misschien van alles in je steekproef hebt, van vrijwel geen depressie, tot zware klinische depressie) kun je proberen mensen te werven die een diagnose klinische depressie hebben. Zo heb je in ieder geval mensen die niet alleen in termen van depressie, maar ook in gerelateerd gedrag meer gelijkend zullen zijn, dus minder variantie zullen vertonen

Je kunt dan zelfs nog verder homogeniseren door bijvoorbeeld essentiele achtergrondkenmerken zoveel mogelijk gelijk te houden. Je kunt bijvoorbeeld enkel vrouwen selecteren ipv van mannen, of de leeftijdsrange beperken, etc. Als deze kenmerken voldoende relevant zijn voor de afhankelijke variabele zal het verder afbakenen resulteren in minder variantie, dus meer power.

Een variant van deze wijze van homogeniseren is om niet zozeer selectiever te zijn bij het trekken van steekproeven, maar om allerlei achtergrondkenmerken of mogelijke 'confounding variables' (variabelen die een onbedoelde onzichtbare invloed uitoefenen op een verband) statistisch op te lossen door ervoor 'te controleren'. In statistische termen wordt dit meestal een 'covariaat' genoemd. Door deze variabelen ook op te nemen in een lineair model hoop je ook de errorvariantie tussen een predictor en een uitkomst, of de variantie van X kleiner te maken.

Zoals je dan waarschijnlijk al aanvoelt: homogeniseren vergroot wellicht de power, maar je levert er ook een stukje (externe) validiteit voor in. Met andere woorden, je kans op statistisch je theorie bij te staan wordt groter, maar je resultaten hebben op een steeds nauwer deel van de populatie betrekking.
beantwoord 9 januari door Ron Pat-El (40,860 punten)
bewerkt 10 januari door Ron Pat-El
...